On quasi-Monte Carlo rules achieving higher order convergence
نویسنده
چکیده
Quasi-Monte Carlo rules which can achieve arbitrarily high order of convergence have been introduced recently. The construction is based on digital nets and the analysis of the integration error uses Walsh functions. Various approaches have been used to show arbitrarily high convergence. In this paper we explain the ideas behind higher order quasi-Monte Carlo rules by leaving out most of the technical details and focusing on the main ideas.
منابع مشابه
Higher order quasi-Monte Carlo methods: A comparison
Quasi-Monte Carlo is usually employed to speed up the convergence of Monte Carlo in approximating multivariate integrals. While convergence of the Monte Carlo method is O(N−1/2), that of plain quasi-Monte Carlo can achieve O(N−1). Several methods exist to increase its convergence to O(N−α ), α > 1, if the integrand has enough smoothness. We discuss two methods: lattice rules with periodization ...
متن کاملConstruction algorithms for higher order polynomial lattice rules
Higher order polynomial lattice point sets are special types of digital higher order nets which are known to achieve almost optimal convergence rates when used in a quasi-Monte Carlo algorithm to approximate high-dimensional integrals over the unit cube. Recently it has been shown that higher order polynomial lattice point sets of “good” quality must exist. However, it was not shown how to cons...
متن کاملWalsh Spaces Containing Smooth Functions and Quasi-Monte Carlo Rules of Arbitrary High Order
We define a Walsh space which contains all functions whose partial mixed derivatives up to order δ ≥ 1 exist and have finite variation. In particular, for a suitable choice of parameters, this implies that certain reproducing kernel Sobolev spaces are contained in these Walsh spaces. For this Walsh space we then show that quasi-Monte Carlo rules based on digital (t, α, s)-sequences achieve the ...
متن کاملComputational Higher Order Quasi-Monte Carlo Integration
The efficient construction of higher-order interlaced polynomial lattice rules introduced recently in [6] is considered and the computational performance of these higher-order QMC rules is investigated on a suite of parametric, highdimensional test integrand functions. After reviewing the principles of their construction by the “fast component-by-component” (CBC) algorithm due to Nuyens and Coo...
متن کاملQuasi-Monte Carlo methods for linear two-stage stochastic programming problems
Quasi-Monte Carlo algorithms are studied for generating scenarios to solve two-stage linear stochastic programming problems. Their integrands are piecewise linear-quadratic, but do not belong to the function spaces considered for QMC error analysis. We show that under some weak geometric condition on the two-stage model all terms of their ANOVA decomposition, except the one of highest order, ar...
متن کامل